#version 330 core out vec4 FragColor; in vec3 Normal; in vec3 FragPos; in vec2 TexCoords; struct Material { sampler2D diffuse; sampler2D specular; float shininess; }; struct PointLight { vec3 position; vec3 ambient; vec3 diffuse; vec3 specular; float constant; float linear; float quadratic; }; struct DirectionalLight { vec3 direction; vec3 ambient; vec3 diffuse; vec3 specular; }; struct SpotLight { vec3 position; vec3 direction; float cutOff; float outerCutOff; vec3 ambient; vec3 diffuse; vec3 specular; float constant; float linear; float quadratic; }; #define POINT_LIGHTS_COUNT 4 uniform Material material; uniform vec3 viewPos; uniform SpotLight spotLight; uniform DirectionalLight directionalLight; uniform PointLight pointLights[POINT_LIGHTS_COUNT]; vec3 ComputeDirectionalLight(DirectionalLight light, vec3 norm, vec3 viewDir) { vec3 lightDir = normalize(-light.direction); vec3 reflectDir = reflect(-lightDir, norm); float diff = max(dot(norm, lightDir), 0.0); float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords)); return (ambient + diffuse + specular); } vec3 ComputePointLight(PointLight light, vec3 norm, vec3 viewDir, vec3 fragPos) { float distance = length(light.position - fragPos); float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); vec3 lightDir = normalize(light.position - fragPos); vec3 reflectDir = reflect(-lightDir, norm); float diff = max(dot(norm, lightDir), 0.0); float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords)); return (ambient * attenuation + diffuse * attenuation + specular * attenuation); } vec3 ComputeSpotLight(SpotLight light, vec3 norm, vec3 viewDir, vec3 fragPos) { vec3 lightDir = normalize(light.position - fragPos); vec3 reflectDir = reflect(-lightDir, norm); float theta = dot(lightDir, normalize(-light.direction)); float epsilon = light.cutOff - light.outerCutOff; float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0); float distance = length(light.position - fragPos); float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); float diff = max(dot(norm, lightDir), 0.0); float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords)); // we leave ambient alone so there's always a little light return ((ambient * attenuation) + (diffuse * intensity * attenuation) + (specular * intensity * attenuation)); } void main() { vec3 norm = normalize(Normal); vec3 viewDir = normalize(viewPos - FragPos); vec3 result = vec3(0.0); result += ComputeDirectionalLight(directionalLight, norm, viewDir); for (int i = 0; i < POINT_LIGHTS_COUNT; i++) { result += ComputePointLight(pointLights[i], norm, viewDir, FragPos); } result += ComputeSpotLight(spotLight, norm, viewDir, FragPos); FragColor = vec4(result, 1.0); }