Initial commit

This commit is contained in:
Tunacan 2021-08-26 16:26:45 +03:00
commit 594276ad72
17 changed files with 12123 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
out/
.vscode/

29
Makefile Normal file
View file

@ -0,0 +1,29 @@
CC = gcc
CPP = g++
CFLAGS = -O2 -g -Wstrict-aliasing -Iinclude
LDFLAGS = -lglfw -lGL -lX11 -lpthread -lXrandr -lXi -ldl -lm
OBJ = out/glad.o out/stb_image.o out/main.o out/world.o
BIN = out/voksel
.PHONY: all clean
all: dirs $(BIN)
dirs:
mkdir -p out
run: all
./$(BIN)
$(BIN): $(OBJ)
$(CPP) -o $(BIN) $^ $(LDFLAGS)
out/%.o: src/%.c
$(CC) -o $@ -c $< $(CFLAGS)
out/%.o: src/%.cpp
$(CPP) -o $@ -c $< $(CFLAGS)
clean:
rm -rf $(BIN) $(OBJ)

290
include/KHR/khrplatform.h Normal file
View file

@ -0,0 +1,290 @@
#ifndef __khrplatform_h_
#define __khrplatform_h_
/*
** Copyright (c) 2008-2018 The Khronos Group Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and/or associated documentation files (the
** "Materials"), to deal in the Materials without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Materials, and to
** permit persons to whom the Materials are furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be included
** in all copies or substantial portions of the Materials.
**
** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
*/
/* Khronos platform-specific types and definitions.
*
* The master copy of khrplatform.h is maintained in the Khronos EGL
* Registry repository at https://github.com/KhronosGroup/EGL-Registry
* The last semantic modification to khrplatform.h was at commit ID:
* 67a3e0864c2d75ea5287b9f3d2eb74a745936692
*
* Adopters may modify this file to suit their platform. Adopters are
* encouraged to submit platform specific modifications to the Khronos
* group so that they can be included in future versions of this file.
* Please submit changes by filing pull requests or issues on
* the EGL Registry repository linked above.
*
*
* See the Implementer's Guidelines for information about where this file
* should be located on your system and for more details of its use:
* http://www.khronos.org/registry/implementers_guide.pdf
*
* This file should be included as
* #include <KHR/khrplatform.h>
* by Khronos client API header files that use its types and defines.
*
* The types in khrplatform.h should only be used to define API-specific types.
*
* Types defined in khrplatform.h:
* khronos_int8_t signed 8 bit
* khronos_uint8_t unsigned 8 bit
* khronos_int16_t signed 16 bit
* khronos_uint16_t unsigned 16 bit
* khronos_int32_t signed 32 bit
* khronos_uint32_t unsigned 32 bit
* khronos_int64_t signed 64 bit
* khronos_uint64_t unsigned 64 bit
* khronos_intptr_t signed same number of bits as a pointer
* khronos_uintptr_t unsigned same number of bits as a pointer
* khronos_ssize_t signed size
* khronos_usize_t unsigned size
* khronos_float_t signed 32 bit floating point
* khronos_time_ns_t unsigned 64 bit time in nanoseconds
* khronos_utime_nanoseconds_t unsigned time interval or absolute time in
* nanoseconds
* khronos_stime_nanoseconds_t signed time interval in nanoseconds
* khronos_boolean_enum_t enumerated boolean type. This should
* only be used as a base type when a client API's boolean type is
* an enum. Client APIs which use an integer or other type for
* booleans cannot use this as the base type for their boolean.
*
* Tokens defined in khrplatform.h:
*
* KHRONOS_FALSE, KHRONOS_TRUE Enumerated boolean false/true values.
*
* KHRONOS_SUPPORT_INT64 is 1 if 64 bit integers are supported; otherwise 0.
* KHRONOS_SUPPORT_FLOAT is 1 if floats are supported; otherwise 0.
*
* Calling convention macros defined in this file:
* KHRONOS_APICALL
* KHRONOS_APIENTRY
* KHRONOS_APIATTRIBUTES
*
* These may be used in function prototypes as:
*
* KHRONOS_APICALL void KHRONOS_APIENTRY funcname(
* int arg1,
* int arg2) KHRONOS_APIATTRIBUTES;
*/
#if defined(__SCITECH_SNAP__) && !defined(KHRONOS_STATIC)
# define KHRONOS_STATIC 1
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APICALL
*-------------------------------------------------------------------------
* This precedes the return type of the function in the function prototype.
*/
#if defined(KHRONOS_STATIC)
/* If the preprocessor constant KHRONOS_STATIC is defined, make the
* header compatible with static linking. */
# define KHRONOS_APICALL
#elif defined(_WIN32)
# define KHRONOS_APICALL __declspec(dllimport)
#elif defined (__SYMBIAN32__)
# define KHRONOS_APICALL IMPORT_C
#elif defined(__ANDROID__)
# define KHRONOS_APICALL __attribute__((visibility("default")))
#else
# define KHRONOS_APICALL
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APIENTRY
*-------------------------------------------------------------------------
* This follows the return type of the function and precedes the function
* name in the function prototype.
*/
#if defined(_WIN32) && !defined(_WIN32_WCE) && !defined(__SCITECH_SNAP__)
/* Win32 but not WinCE */
# define KHRONOS_APIENTRY __stdcall
#else
# define KHRONOS_APIENTRY
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APIATTRIBUTES
*-------------------------------------------------------------------------
* This follows the closing parenthesis of the function prototype arguments.
*/
#if defined (__ARMCC_2__)
#define KHRONOS_APIATTRIBUTES __softfp
#else
#define KHRONOS_APIATTRIBUTES
#endif
/*-------------------------------------------------------------------------
* basic type definitions
*-----------------------------------------------------------------------*/
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__GNUC__) || defined(__SCO__) || defined(__USLC__)
/*
* Using <stdint.h>
*/
#include <stdint.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(__VMS ) || defined(__sgi)
/*
* Using <inttypes.h>
*/
#include <inttypes.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(_WIN32) && !defined(__SCITECH_SNAP__)
/*
* Win32
*/
typedef __int32 khronos_int32_t;
typedef unsigned __int32 khronos_uint32_t;
typedef __int64 khronos_int64_t;
typedef unsigned __int64 khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(__sun__) || defined(__digital__)
/*
* Sun or Digital
*/
typedef int khronos_int32_t;
typedef unsigned int khronos_uint32_t;
#if defined(__arch64__) || defined(_LP64)
typedef long int khronos_int64_t;
typedef unsigned long int khronos_uint64_t;
#else
typedef long long int khronos_int64_t;
typedef unsigned long long int khronos_uint64_t;
#endif /* __arch64__ */
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif 0
/*
* Hypothetical platform with no float or int64 support
*/
typedef int khronos_int32_t;
typedef unsigned int khronos_uint32_t;
#define KHRONOS_SUPPORT_INT64 0
#define KHRONOS_SUPPORT_FLOAT 0
#else
/*
* Generic fallback
*/
#include <stdint.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#endif
/*
* Types that are (so far) the same on all platforms
*/
typedef signed char khronos_int8_t;
typedef unsigned char khronos_uint8_t;
typedef signed short int khronos_int16_t;
typedef unsigned short int khronos_uint16_t;
/*
* Types that differ between LLP64 and LP64 architectures - in LLP64,
* pointers are 64 bits, but 'long' is still 32 bits. Win64 appears
* to be the only LLP64 architecture in current use.
*/
#ifdef _WIN64
typedef signed long long int khronos_intptr_t;
typedef unsigned long long int khronos_uintptr_t;
typedef signed long long int khronos_ssize_t;
typedef unsigned long long int khronos_usize_t;
#else
typedef signed long int khronos_intptr_t;
typedef unsigned long int khronos_uintptr_t;
typedef signed long int khronos_ssize_t;
typedef unsigned long int khronos_usize_t;
#endif
#if KHRONOS_SUPPORT_FLOAT
/*
* Float type
*/
typedef float khronos_float_t;
#endif
#if KHRONOS_SUPPORT_INT64
/* Time types
*
* These types can be used to represent a time interval in nanoseconds or
* an absolute Unadjusted System Time. Unadjusted System Time is the number
* of nanoseconds since some arbitrary system event (e.g. since the last
* time the system booted). The Unadjusted System Time is an unsigned
* 64 bit value that wraps back to 0 every 584 years. Time intervals
* may be either signed or unsigned.
*/
typedef khronos_uint64_t khronos_utime_nanoseconds_t;
typedef khronos_int64_t khronos_stime_nanoseconds_t;
#endif
/*
* Dummy value used to pad enum types to 32 bits.
*/
#ifndef KHRONOS_MAX_ENUM
#define KHRONOS_MAX_ENUM 0x7FFFFFFF
#endif
/*
* Enumerated boolean type
*
* Values other than zero should be considered to be true. Therefore
* comparisons should not be made against KHRONOS_TRUE.
*/
typedef enum {
KHRONOS_FALSE = 0,
KHRONOS_TRUE = 1,
KHRONOS_BOOLEAN_ENUM_FORCE_SIZE = KHRONOS_MAX_ENUM
} khronos_boolean_enum_t;
#endif /* __khrplatform_h_ */

2129
include/glad/glad.h Normal file

File diff suppressed because it is too large Load diff

7762
include/stb_image.h Normal file

File diff suppressed because it is too large Load diff

15
res/shaders/chunk.fs.glsl Normal file
View file

@ -0,0 +1,15 @@
#version 330 core
out vec4 fragColor;
in vec2 passTexCoord;
uniform sampler2D textureAtlas;
void main() {
/*
vec4 texColor = texture(textureAtlas, passTexCoord);
if (texColor.a < 0.1) discard;
fragColor = texColor;
*/
fragColor = vec4(0.9, 0.8, 0.7, 1.0);
}

14
res/shaders/chunk.vs.glsl Normal file
View file

@ -0,0 +1,14 @@
#version 330 core
layout (location = 0) in vec3 pos;
layout (location = 1) in vec2 texCoord;
out vec2 passTexCoord;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main() {
gl_Position = projection * view * model * vec4(pos, 1.0f);
passTexCoord = texCoord;
}

107
src/camera.h Normal file
View file

@ -0,0 +1,107 @@
#pragma once
// stolen from learnopengl.com
#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vector>
// Defines several possible options for camera movement. Used as abstraction to stay away from window-system specific input methods
enum CameraMovement {
FORWARD,
BACKWARD,
LEFT,
RIGHT
};
// Default camera values
const float YAW = -90.0f;
const float PITCH = 0.0f;
const float SPEED = 2.5f;
const float SENSITIVITY = 0.1f;
const float ZOOM = 90.0f;
// An abstract camera class that processes input and calculates the corresponding Euler Angles, Vectors and Matrices for use in OpenGL
class Camera
{
public:
// camera Attributes
glm::vec3 position;
glm::vec3 front;
glm::vec3 up;
glm::vec3 right;
glm::vec3 worldUp;
// euler Angles
float yaw;
float pitch;
// camera options
float movementSpeed;
float mouseSensitivity;
float zoom;
// constructor with vectors
explicit Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f),
float yaw = YAW, float pitch = PITCH) : position(position), worldUp(up), yaw(yaw), pitch(pitch),
front(glm::vec3(0.0f, 0.0f, -1.0f)), movementSpeed(SPEED), mouseSensitivity(SENSITIVITY), zoom(ZOOM)
{
updateCameraVectors();
}
// returns the view matrix calculated using Euler Angles and the LookAt Matrix
glm::mat4 getViewMatrix() const {
return glm::lookAt(position, position + front, up);
}
// processes input received from any keyboard-like input system. Accepts input parameter in the form of camera defined ENUM (to abstract it from windowing systems)
void processKeyboard(CameraMovement direction, double deltaTime)
{
float velocity = movementSpeed * deltaTime;
if (direction == FORWARD)
position += front * velocity;
if (direction == BACKWARD)
position -= front * velocity;
if (direction == LEFT)
position -= right * velocity;
if (direction == RIGHT)
position += right * velocity;
}
// processes input received from a mouse input system. Expects the offset value in both the x and y direction.
void processMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true)
{
xoffset *= mouseSensitivity;
yoffset *= mouseSensitivity;
yaw += xoffset;
pitch += yoffset;
// make sure that when pitch is out of bounds, screen doesn't get flipped
if (constrainPitch)
{
if (pitch > 89.0f)
pitch = 89.0f;
if (pitch < -89.0f)
pitch = -89.0f;
}
// update front, right and up Vectors using the updated Euler angles
updateCameraVectors();
}
private:
// calculates the front vector from the Camera's (updated) Euler Angles
void updateCameraVectors() {
// calculate the new front vector
glm::vec3 f;
f.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
f.y = sin(glm::radians(pitch));
f.z = sin(glm::radians(yaw)) * cos(glm::radians(pitch));
front = glm::normalize(f);
// also re-calculate the right and up vector
right = glm::normalize(glm::cross(front, worldUp)); // normalize the vectors, because their length gets closer to 0 the more you look up or down which results in slower movement.
up = glm::normalize(glm::cross(right, front));
}
};

1140
src/glad.c Normal file

File diff suppressed because it is too large Load diff

128
src/main.cpp Normal file
View file

@ -0,0 +1,128 @@
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <stb_image.h>
#include <stdio.h>
#include "types.h"
#include "camera.h"
#include "shader.h"
#include "texture.h"
#include "mesh.h"
#include "world.h"
u32 windowWidth = 800;
u32 windowHeight = 600;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
f32 lastX = windowWidth / 2.0f;
f32 lastY = windowHeight / 2.0f;
bool firstMouse = true;
// timing
f32 deltaTime = 0.0f;
f32 lastFrame = 0.0f;
void framebufferSizeCallback(GLFWwindow* window, int width, int height);
void mouseCallback(GLFWwindow* window, double xPos, double yPos);
void processInput(GLFWwindow *window);
int main(int argc, char *argv[]) {
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
GLFWwindow* window = glfwCreateWindow(windowWidth, windowHeight, "voksel", NULL, NULL);
if (window == NULL) {
printf("Failed to create GLFW window\n");
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebufferSizeCallback);
glfwSetCursorPosCallback(window, mouseCallback);
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
printf("Failed to initialize GLAD\n");
return -1;
}
glEnable(GL_DEPTH_TEST);
stbi_set_flip_vertically_on_load(true);
Shader shader("../res/shaders/chunk.vs.glsl", "../res/shaders/chunk.fs.glsl");
World *world = new World();
world->generateChunk(1, 1, 1)->buildMesh(world, 1, 1, 1);
while (!glfwWindowShouldClose(window)) {
f32 currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
processInput(window);
glClearColor(0.0f, 0.6f, 0.6f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shader.use();
shader.setInt("textureAtlas", 0);
glm::mat4 projection = glm::perspective(glm::radians(camera.zoom), (f32)windowWidth / (f32)windowHeight, 0.1f, 100.0f);
shader.setMat4("projection", projection);
glm::mat4 view = camera.getViewMatrix();
shader.setMat4("view", view);
glm::mat4 model = glm::mat4(1.0f);
shader.setMat4("model", model);
world->render(&shader, nullptr);
glfwSwapBuffers(window);
glfwPollEvents();
}
delete world;
glfwTerminate();
return 0;
}
void processInput(GLFWwindow *window) {
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.processKeyboard(FORWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
camera.processKeyboard(BACKWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
camera.processKeyboard(LEFT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
camera.processKeyboard(RIGHT, deltaTime);
}
void framebufferSizeCallback(GLFWwindow* window, int width, int height) {
glViewport(0, 0, width, height);
windowWidth = width;
windowHeight = height;
}
void mouseCallback(GLFWwindow* window, double xPos, double yPos) {
if (firstMouse) {
lastX = xPos;
lastY = yPos;
firstMouse = false;
}
f32 xOffset = xPos - lastX;
f32 yOffset = lastY - yPos; // reversed since y-coordinates go from bottom to top
lastX = xPos;
lastY = yPos;
camera.processMouseMovement(xOffset, yOffset);
}

46
src/mesh.h Normal file
View file

@ -0,0 +1,46 @@
#pragma once
#include <glad/glad.h>
#include "types.h"
class Mesh {
public:
u32 vaoId;
u32 vboId;
u32 vertexCount;
Mesh(f32 *vertices, int size) {
vertexCount = size / sizeof(f32) / 5;
glGenVertexArrays(1, &vaoId);
glGenBuffers(1, &vboId);
glBindVertexArray(vaoId);
glBindBuffer(GL_ARRAY_BUFFER, vboId);
glBufferData(GL_ARRAY_BUFFER, size, vertices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(f32), (void*)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(f32), (void*)(3 * sizeof(f32)));
glEnableVertexAttribArray(1);
delete[] vertices;
}
void render() {
glBindVertexArray(vaoId);
glDrawArrays(GL_TRIANGLES, 0, vertexCount);
}
~Mesh() {
// Delete the VBO
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDeleteBuffers(1, &vboId);
// Delete the VAO
glBindVertexArray(0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDeleteVertexArrays(1, &vaoId);
}
};

191
src/shader.h Normal file
View file

@ -0,0 +1,191 @@
#pragma once
// stolen from learnopengl.com
#include <glad/glad.h>
#include <glm/glm.hpp>
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
class Shader
{
public:
unsigned int ID;
// constructor generates the shader on the fly
// ------------------------------------------------------------------------
Shader(const char* vertexPath, const char* fragmentPath, const char* geometryPath = nullptr)
{
// 1. retrieve the vertex/fragment source code from filePath
std::string vertexCode;
std::string fragmentCode;
std::string geometryCode;
std::ifstream vShaderFile;
std::ifstream fShaderFile;
std::ifstream gShaderFile;
// ensure ifstream objects can throw exceptions:
vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
gShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
try
{
// open files
vShaderFile.open(vertexPath);
fShaderFile.open(fragmentPath);
std::stringstream vShaderStream, fShaderStream;
// read file's buffer contents into streams
vShaderStream << vShaderFile.rdbuf();
fShaderStream << fShaderFile.rdbuf();
// close file handlers
vShaderFile.close();
fShaderFile.close();
// convert stream into string
vertexCode = vShaderStream.str();
fragmentCode = fShaderStream.str();
// if geometry shader path is present, also load a geometry shader
if(geometryPath != nullptr)
{
gShaderFile.open(geometryPath);
std::stringstream gShaderStream;
gShaderStream << gShaderFile.rdbuf();
gShaderFile.close();
geometryCode = gShaderStream.str();
}
}
catch (std::ifstream::failure& e)
{
std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
}
const char* vShaderCode = vertexCode.c_str();
const char * fShaderCode = fragmentCode.c_str();
// 2. compile shaders
unsigned int vertex, fragment;
// vertex shader
vertex = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex, 1, &vShaderCode, NULL);
glCompileShader(vertex);
checkCompileErrors(vertex, "VERTEX");
// fragment Shader
fragment = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment, 1, &fShaderCode, NULL);
glCompileShader(fragment);
checkCompileErrors(fragment, "FRAGMENT");
// if geometry shader is given, compile geometry shader
unsigned int geometry;
if(geometryPath != nullptr)
{
const char * gShaderCode = geometryCode.c_str();
geometry = glCreateShader(GL_GEOMETRY_SHADER);
glShaderSource(geometry, 1, &gShaderCode, NULL);
glCompileShader(geometry);
checkCompileErrors(geometry, "GEOMETRY");
}
// shader Program
ID = glCreateProgram();
glAttachShader(ID, vertex);
glAttachShader(ID, fragment);
if(geometryPath != nullptr)
glAttachShader(ID, geometry);
glLinkProgram(ID);
checkCompileErrors(ID, "PROGRAM");
// delete the shaders as they're linked into our program now and no longer necessery
glDeleteShader(vertex);
glDeleteShader(fragment);
if(geometryPath != nullptr)
glDeleteShader(geometry);
}
// activate the shader
// ------------------------------------------------------------------------
void use()
{
glUseProgram(ID);
}
// utility uniform functions
// ------------------------------------------------------------------------
void setBool(const std::string &name, bool value) const
{
glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value);
}
// ------------------------------------------------------------------------
void setInt(const std::string &name, int value) const
{
glUniform1i(glGetUniformLocation(ID, name.c_str()), value);
}
// ------------------------------------------------------------------------
void setFloat(const std::string &name, f32 value) const
{
glUniform1f(glGetUniformLocation(ID, name.c_str()), value);
}
// ------------------------------------------------------------------------
void setVec2(const std::string &name, const glm::vec2 &value) const
{
glUniform2fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]);
}
void setVec2(const std::string &name, f32 x, f32 y) const
{
glUniform2f(glGetUniformLocation(ID, name.c_str()), x, y);
}
// ------------------------------------------------------------------------
void setVec3(const std::string &name, const glm::vec3 &value) const
{
glUniform3fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]);
}
void setVec3(const std::string &name, f32 x, f32 y, f32 z) const
{
glUniform3f(glGetUniformLocation(ID, name.c_str()), x, y, z);
}
// ------------------------------------------------------------------------
void setVec4(const std::string &name, const glm::vec4 &value) const
{
glUniform4fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]);
}
void setVec4(const std::string &name, f32 x, f32 y, f32 z, f32 w)
{
glUniform4f(glGetUniformLocation(ID, name.c_str()), x, y, z, w);
}
// ------------------------------------------------------------------------
void setMat2(const std::string &name, const glm::mat2 &mat) const
{
glUniformMatrix2fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
}
// ------------------------------------------------------------------------
void setMat3(const std::string &name, const glm::mat3 &mat) const
{
glUniformMatrix3fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
}
// ------------------------------------------------------------------------
void setMat4(const std::string &name, const glm::mat4 &mat) const
{
glUniformMatrix4fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
}
private:
// utility function for checking shader compilation/linking errors.
// ------------------------------------------------------------------------
void checkCompileErrors(GLuint shader, std::string type)
{
GLint success;
GLchar infoLog[1024];
if(type != "PROGRAM")
{
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if(!success)
{
glGetShaderInfoLog(shader, 1024, NULL, infoLog);
std::cout << "ERROR::SHADER_COMPILATION_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
}
}
else
{
glGetProgramiv(shader, GL_LINK_STATUS, &success);
if(!success)
{
glGetProgramInfoLog(shader, 1024, NULL, infoLog);
std::cout << "ERROR::PROGRAM_LINKING_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
}
}
}
};

2
src/stb_image.c Normal file
View file

@ -0,0 +1,2 @@
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

35
src/texture.h Normal file
View file

@ -0,0 +1,35 @@
#pragma once
#include <glad/glad.h>
#include <stb_image.h>
class Texture {
public:
u32 id;
u32 width;
u32 height;
u32 nrChannels;
Texture(const char *texturePath, const int format) {
glGenTextures(1, &id);
glBindTexture(GL_TEXTURE_2D, id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
int width, height, nrChannels;
unsigned char *data = stbi_load(texturePath, &width, &height, &nrChannels, 0);
if (data) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, format, GL_UNSIGNED_BYTE, data);
} else {
printf("Failed to load texture\n");
}
stbi_image_free(data);
}
void bind(Shader *shader, char *name, u32 unit) {
glActiveTexture(GL_TEXTURE0 + unit);
glBindTexture(GL_TEXTURE_2D, id);
shader->setInt(name, unit);
}
};

19
src/types.h Normal file
View file

@ -0,0 +1,19 @@
#pragma once
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef size_t usize;
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
typedef float f32;
typedef double f64;

163
src/world.cpp Normal file
View file

@ -0,0 +1,163 @@
#include "world.h"
#include <cmath>
World::World() {
}
Chunk::Chunk() {
}
void Chunk::buildMesh(World *world, i32 chunkX, i32 chunkY, i32 chunkZ) {
delete mesh;
std::vector<glm::vec3> vert;
std::vector<glm::vec2> uv;
for (i32 x = 0; x < CHUNK_SIZE; x++) {
for (i32 y = 0; y < CHUNK_SIZE; y++) {
for (i32 z = 0; z < CHUNK_SIZE; z++) {
u32 b = blocks[x][y][z];
if (b == 0) continue;
u32 worldX = chunkX * CHUNK_SIZE + x;
u32 worldY = chunkY * CHUNK_SIZE + y;
u32 worldZ = chunkZ * CHUNK_SIZE + z;
bool topVisible = world->getBlock(worldX, worldY + 1, worldZ) == 0;
bool bottomVisible = world->getBlock(worldX, worldY - 1, worldZ) == 0;
bool northVisible = world->getBlock(worldX + 1, worldY, worldZ) == 0;
bool southVisible = world->getBlock(worldX - 1, worldY, worldZ) == 0;
bool eastVisible = world->getBlock(worldX, worldY, worldZ + 1) == 0;
bool westVisible = world->getBlock(worldX, worldY, worldZ - 1) == 0;
auto pos = glm::vec3(x * 2, y * 2, z * 2);
/*
val topTexCoords = textureAtlas.getTexCoords(block.topTileX, block.topTileY)
val sideTexCoords = textureAtlas.getTexCoords(block.sideTileX, block.sideTileY)
val sideTexCoordsInverse = textureAtlas.getInverseTexCoords(block.sideTileX, block.sideTileY)
val bottomTexCoords = textureAtlas.getInverseTexCoords(block.bottomTileX, block.bottomTileY)
*/
if (topVisible) {
vert.push_back(pos + glm::vec3(-1, 1, -1));
vert.push_back(pos + glm::vec3(-1, 1, 1));
vert.push_back(pos + glm::vec3( 1, 1, -1));
vert.push_back(pos + glm::vec3( 1, 1, -1));
vert.push_back(pos + glm::vec3(-1, 1, 1));
vert.push_back(pos + glm::vec3( 1, 1, 1));
//uv.addAll(topTexCoords)
}
if (bottomVisible) {
vert.push_back(pos + glm::vec3(-1, -1, -1));
vert.push_back(pos + glm::vec3( 1, -1, -1));
vert.push_back(pos + glm::vec3(-1, -1, 1));
vert.push_back(pos + glm::vec3( 1, -1, -1));
vert.push_back(pos + glm::vec3( 1, -1, 1));
vert.push_back(pos + glm::vec3(-1, -1, 1));
//uv.addAll(bottomTexCoords)
}
if (northVisible) {
vert.push_back(pos + glm::vec3( 1, -1, -1));
vert.push_back(pos + glm::vec3( 1, 1, -1));
vert.push_back(pos + glm::vec3( 1, -1, 1));
vert.push_back(pos + glm::vec3( 1, 1, -1));
vert.push_back(pos + glm::vec3( 1, 1, 1));
vert.push_back(pos + glm::vec3( 1, -1, 1));
//uv.addAll(sideTexCoordsInverse)
}
if (southVisible) {
vert.push_back(pos + glm::vec3(-1, -1, -1));
vert.push_back(pos + glm::vec3(-1, -1, 1));
vert.push_back(pos + glm::vec3(-1, 1, -1));
vert.push_back(pos + glm::vec3(-1, 1, -1));
vert.push_back(pos + glm::vec3(-1, -1, 1));
vert.push_back(pos + glm::vec3(-1, 1, 1));
//uv.addAll(sideTexCoords)
}
if (eastVisible) {
vert.push_back(pos + glm::vec3(-1, -1, 1)); // bottom left
vert.push_back(pos + glm::vec3( 1, -1, 1)); // bottom right
vert.push_back(pos + glm::vec3(-1, 1, 1)); // top left
vert.push_back(pos + glm::vec3(-1, 1, 1)); // top left
vert.push_back(pos + glm::vec3( 1, -1, 1)); // bottom right
vert.push_back(pos + glm::vec3( 1, 1, 1)); // top right
//uv.addAll(sideTexCoords)
}
if (westVisible) {
vert.push_back(pos + glm::vec3(-1, -1, -1));
vert.push_back(pos + glm::vec3(-1, 1, -1));
vert.push_back(pos + glm::vec3( 1, -1, -1));
vert.push_back(pos + glm::vec3(-1, 1, -1));
vert.push_back(pos + glm::vec3( 1, 1, -1));
vert.push_back(pos + glm::vec3( 1, -1, -1));
//uv.addAll(sideTexCoordsInverse)
}
}
}
}
auto buf = new f32[vert.size() * 5];
for (int i = 0; i < vert.size(); i++) {
buf[i * 5] = vert[i].x;
buf[i * 5 + 1] = vert[i].y;
buf[i * 5 + 2] = vert[i].z;
}
for (int i = 0; i < uv.size(); i++) {
buf[i * 5 + 3] = uv[i].x;
buf[i * 5 + 4] = uv[i].y;
}
this->mesh = new Mesh(&buf[0], vert.size() * 5 * sizeof(f32));
}
Chunk* World::generateChunk(i32 chunkX, i32 chunkY, i32 chunkZ) {
Chunk *c = new Chunk();
int b = 0;
if (chunkX == 1 && chunkY == 1 && chunkZ == 1) {
b = 1;
}
for (i32 x = 0; x < CHUNK_SIZE; x++) {
for (i32 y = 0; y < CHUNK_SIZE; y++) {
for (i32 z = 0; z < CHUNK_SIZE; z++) {
c->blocks[x][y][z] = b;
}
}
}
chunks[(ivec3) { chunkX, chunkY, chunkZ }] = c;
return c;
}
Chunk* World::getChunk(i32 chunkX, i32 chunkY, i32 chunkZ) {
auto x = chunks.find((ivec3) { chunkX, chunkY, chunkZ });
Chunk *c;
if (x == chunks.end())
c = generateChunk(chunkX, chunkY, chunkZ);
else c = x->second;
return c;
}
inline u32 World::getBlock(i32 x, i32 y, i32 z) {
auto chunk = getChunk(x / CHUNK_SIZE, y / CHUNK_SIZE, z / CHUNK_SIZE);
return chunk->blocks[x % CHUNK_SIZE][y % CHUNK_SIZE][z % CHUNK_SIZE];
}
inline void World::setBlock(u32 block, i32 x, i32 y, i32 z, bool updateMeshes) {
auto xRem = x % CHUNK_SIZE;
auto yRem = y % CHUNK_SIZE;
auto zRem = z % CHUNK_SIZE;
auto chunkX = x / CHUNK_SIZE;
auto chunkY = y / CHUNK_SIZE;
auto chunkZ = z / CHUNK_SIZE;
auto chunk = getChunk(chunkX, chunkY, chunkZ);
chunk->blocks[xRem][yRem][zRem] = block;
if (updateMeshes) {
chunk->buildMesh(this, chunkX, chunkY, chunkZ);
if (xRem == 0) getChunk(chunkX - 1, chunkY, chunkZ)->buildMesh(this, chunkX - 1, chunkY, chunkZ);
if (xRem == CHUNK_SIZE - 1) getChunk(chunkX + 1, chunkY, chunkZ)->buildMesh(this, chunkX + 1, chunkY, chunkZ);
if (yRem == 0) getChunk(chunkX, chunkY - 1, chunkZ)->buildMesh(this, chunkX, chunkY - 1, chunkZ);
if (yRem == CHUNK_SIZE - 1) getChunk(chunkX, chunkY + 1, chunkZ)->buildMesh(this, chunkX, chunkY + 1, chunkZ);
if (zRem == 0) getChunk(chunkX, chunkY, chunkZ - 1)->buildMesh(this, chunkX, chunkY, chunkZ - 1);
if (zRem == CHUNK_SIZE - 1) getChunk(chunkX, chunkY, chunkZ + 1)->buildMesh(this, chunkX, chunkY, chunkZ + 1);
}
}
void World::render(Shader *shader, Texture *textureAtlas) {
shader->use();
auto c = getChunk(1, 1, 1);
if (c->mesh != nullptr) c->mesh->render();
}

51
src/world.h Normal file
View file

@ -0,0 +1,51 @@
#pragma once
#include <vector>
#include <unordered_map>
#include <glm/glm.hpp>
#include "mesh.h"
#include "shader.h"
#include "texture.h"
#define CHUNK_SIZE 16
class World;
class Chunk {
public:
u32 blocks[CHUNK_SIZE][CHUNK_SIZE][CHUNK_SIZE];
Mesh *mesh = nullptr;
Chunk();
void buildMesh(World *world, i32 chunkX, i32 chunkY, i32 chunkZ);
};
struct ivec3 {
i32 x, y, z;
friend bool operator==(const ivec3& a, const ivec3& b){
return a.x == b.x && a.y == b.y && a.z == b.z;
}
};
namespace std {
template<> struct hash<ivec3> {
std::size_t operator()(const ivec3& k) const noexcept {
return (k.x ^ (k.y << 1) ^ (k.z << 2)) >> 3;
}
};
}
class World {
public:
std::unordered_map<ivec3, Chunk*> chunks;
World();
Chunk* generateChunk(i32 chunkX, i32 chunkY, i32 chunkZ);
Chunk* getChunk(i32 chunkX, i32 chunkY, i32 chunkZ);
inline u32 getBlock(i32 x, i32 y, i32 z);
inline void setBlock(u32 block, i32 x, i32 y, i32 z, bool updateMeshes);
void render(Shader *shader, Texture *textureAtlas);
};